Lecture 21 CH102 A3 (TuTh 5 pm)

Thursday, April 7, 2016

For today ...

- Continue Ch. 17 Spontaneous change how far?
 - The role of ΔS in colligative properties
 - Absolute entropies
 - Entropy change for chemical reactions
 - A system-only measure of spontaneity: Free energy ΔG

Next lecture:

- Continue Ch. 17 Spontaneous change how far?
 - ΔG vs. temperature
 - The three faces of ΔG
 - Effect of temperature on the equilibrium constant K

No decture west Thursday, April 14
No OFFICE HOUR UED. 4/13
Fai 4/15

ecture 21 CH102 A3 (TuTh 5 pm) Spring 2016

Taking stock

Spontaneity **means** that ...

$$\Delta S_{\rm tot} = \Delta S_{\rm sys} + \Delta S_{\rm sur} > 0$$

Spontaneity **does not** require that ...

$$\Delta S_{\rm sys} >$$
o or $\Delta S_{\rm surr} >$ o

A neat illustration of the **separate roles** of $\Delta S_{\rm sys}$ and $\Delta S_{\rm sur}$ is understanding why **steam condenses** and **water boils**

The same approach works for **melting** and for **sublimation**

BOSTON UNIVERSITY

$$H_2O(3) \longrightarrow H_2O(2)$$
 Candenskillon

 $\Delta S_{LOTAL} = \Delta S_{SQS} - \Delta H_{SQS} \times ^{1}40.65 \times 10^{2}$
 $= -108.9 \times 1 + 40.65 \times 10^{2}$
 $= -108.9 \times 1 + 40.65 \times 10^{2}$
 $\Delta H_{QNO} = -\Delta H_{QNO}$
 $\Delta H_{QNO} =$

Jouin - liquid

Attension = refers to enthalpy

Change accompanies

MELTING - near to

add heat = encothermic

AH fus = (+)

FREEZING ZE EXOTHERMIC

a Solution has more arrangements

(ways) than a pure liquid,

So 5 saurior > 5 Liquid

What is happening? The water in

the solution Greezes to solve

pure it , so Socio is the

same for Greezes a solvetois

or a pure liquid.

Cut, entropy Change must be

greater for Greeze's a solvetois

so, TEMP MUST CHANGE (DEDEASE)

Lecture 21 CH102 A3 (TuTh 5 pm) Spring 201

How to determine ΔS_{sys} for a chemical reaction?

We can get $\Delta S_{\rm sys}$ by analyzing changes in particle and energy dispersal in the system.

But, in practice, it is easier to get $\Delta S_{\rm sys}$ by measuring heat flow between the system and surroundings when they are in equilibrium.

At equilibrium, $\Delta S_{\text{tot}} = 0$, and so ...

$$\Delta S_{\text{sys}} = -\Delta S_{\text{sur}} = -\Delta H_{\text{sur}}/T = +\Delta H_{\text{sys}}/T$$

BOSTON UNIVERSITY

1 Hrow

 $A \rightarrow 0$

AHFB - AHF = AHM

15 x ?

15 sup

5 Products

Spectarts

= 15m

Copyright © 2014 Dan Dill dan@bu.edu

entropia.

Lecture 21 CH102 A3 (TuTh 5 pm) Spring 201

How to determine $\Delta_r S^{\circ}$?

At equilibrium, $\Delta S_{\text{tot}} = 0$, and so ...

$$\Delta S_{\text{sys}} = -\Delta S_{\text{sur}} = -\Delta H_{\text{sur}}/T = +\Delta H_{\text{sys}}/T$$

At o K, for each substance W = 1 and so S = 0!

Therefore, by heating, we can find S for each substance at a particular temperature.

These values are called absolute entropies.

BOSTON UNIVERSITY 10

at O K perfect = O W = V order = O = V

as we hear the substance, enthosy goes up!

Lest to Clesval temp Cas K Copyright © 2015 Dan Dill dan@bu.edu

Find S at a particular temperature

Make a sketch of how you expect the entropy of water to change with temperature, starting from $S={\rm o}$ at $T={\rm o}$ K and ending at the entropy at T=400 K.

BOSTON UNIVERSITY

$$5_{400}K = 5_{hast > 0/0} + AH_{GW}$$

$$5_{-5273}K + 5_{hast | 15000} + AH_{OW}$$

$$+ 5_{hast | 15000} + 1_{top}$$

$$273K - 372K + 5_{hast | 600}$$

$$+ 5_{hast | 600}$$

Get absolute entropies S

Absolute entropies typically tabulated at 298 K.

Called standard entropies, So

BOSTON
UNIVERSITY

50 IN TABLES = at 2018 K, absolute enmon of / mode substance

How to determine $\Delta_r S^o$? 1. Get absolute entropies S^o 2. $\Delta_r S^o = S_{\text{products}} - S_{\text{reactants}}$

BOSTON UNIVERSITY

Lecture 21 CH102 A3 (TuTh 5 pm) Spring 201

Entropy of reaction, ΔS^{o}_{rxn}

 $S^{0}(300 \text{ K}) = S(\text{heating solid}) + \Delta H_{\text{fus}}/T_{\text{fus}} + S(\text{heating liquid}) + ...$ $S(\text{heating}) = \int dq/T = \int C_{\text{P}} \, dT/T$

 $\Delta_{r}S^{o} = S^{o}(\text{products}) - S^{o}(\text{reactants})$

Rules of thumb:

- If more gas moles formed, $\Delta_r S^o$ large and positive
- If more gas moles consumed, $\Delta_r S^o$ large and negative
- If gas moles unchanged, $\Delta_r S^0$ small but positive or negative

BOSTON UNIVERSITY 15

FORM MORE GOS => LARGE (F) ASO 2) CONSUME MORE GOS => LARGE (C) 15° 3) GAS Moles unbhandly SMALE 15° Court predict soil LAMCE

$$\Delta_r S^\circ = S^\circ(\text{products}) - S^\circ(\text{reactants})$$

$$2 \text{ Zn}(s) + O_2(g) \text{ ? 2 ZnO}(s)$$

$$\Delta_r S^0 = 2 \times 43.7 - (2 \times 41.6 + 205.0) = -200.8 \text{ J/K}$$

$$\Delta n_g = -1, \text{ so } \Delta_r S^0 \text{ is large and negative}$$

$$\begin{split} &N_{2}(g) + O_{2}(g) ? 2 NO(g) \\ \Delta_{r}S^{o} &= 2 \times \frac{210.8}{0.8} - (191.6 + 205.0) = +25 \text{ J/K} \\ &\Delta n_{g} = 0, \text{ so } \Delta_{r}S^{o} \text{ is small} \end{split}$$

BOSTON UNIVERSITY